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Abstract— Multidimensional scaling of gene sequence data 

has long played a vital role in analysing gene sequence data to 

identify clusters and patterns. However the computation 

complexities and memory requirements of state-of-the-art 

dimensional scaling algorithms make it infeasible to scale to 

large datasets. In this paper we present an autoencoder-based 

dimensional reduction model which can easily scale to datasets 

containing millions of gene sequences, while attaining results 

comparable to state-of-the-art MDS algorithms with minimal 

resource requirements. The model also supports out-of-sample 

data points with a 99.5%+ accuracy based on our experiments. 

The proposed model is evaluated against DAMDS with a real 

world fungi gene sequence dataset. The presented results 

showcase the effectiveness of the autoencoder-based dimension 

reduction model and its advantages. 

Keywords— Autoencoder, Multidimensional Scaling, Gene 

Sequences, Neural Networks 

I. INTRODUCTION 

Deep learning has been emerging as a solution to many 
machine learning applications and is shown to have strong 
performance and versatility in many areas, which has led to 
its adaptation in both industry and academia for machine 
learning applications. With this expansive application in 
many fields, more and more deep learning models have been 
introduced to tackle specific sub-problem areas. The 
increased availability of data has also led to the use of deep 
learning models for various applications. This is  because 
with more data readily available, larger and more complex 
networks can be created and trained to produce more accurate 
results. Thanks to the exponential growth of data in the 
modern world, this trend will only continue to accelerate. One 
of the most important aspects of deep learning that makes it 
such a versatile solution is that networks are able to learn and 
encode patterns and structures present within the input data 
very efficiently. Thus this learned information can be used to 
categorize or characterize new input data. 

Autoencoders are a widely used unsupervised neural 
network model which learn how to represent a dataset using 
a reduced representation and then reconstruct that data back 
from the reduced version to the original representation,  
essentially multidimensional scaling. This paper presents a 
model which utilizes the natural dimension reduction 
capability in autoencoders as a solution to dimension 
reduction in gene sequence data. 

Multidimensional scaling (MDS) refers to a set of 
algorithms and methods that are used to convert high 
dimensional data into lower dimensions so they can be 
visualized and analysed. MDS is a well-researched area, 
especially in machine learning, and there are various linear 
and non-linear solutions available in research literature [1], 
[2], [3]. This is important because humans are not able to 
clearly think about data in higher dimensions, so scaling them 
down to 2 or 3 dimensions allows data to be visualized to find 

patterns and structures in the data. One of the most important 
properties of multidimensional scaling is that it should keep 
as much information from the data points as possible while 
projecting them down to lower dimensions. There are various 
MDS algorithms used in modern applications. In [2], the 
authors discuss such methods. Additionally, new MDS 
methods such as T-SN [4] and UMAP [5] have gained more 
popularity over recent years. DAMDS [6] is another popular 
scalable MDS algorithm used for large datasets. As with 
many other machine learning domains, deep learning can be 
applied to MDS. While the literature on using deep learning 
for dimension reduction is small at the moment, research is 
being done to achieve better results using the latest such 
technologies. 

Scaling data using MDS techniques to 2 or 3 dimensions 
plays an important role in analysing biological data such as 
gene sequences or biological images. This allows researchers 
to identify clusters and patterns within large datasets which 
would otherwise be incomprehensible due to the high 
dimensionality of the data. With advances in bio-sequencing 
techniques, more and more raw gene sequence data is readily 
available to be analysed. While we limit the scope of this 
paper to biological gene sequence data, approaches along the 
same lines as proposed herein might be adaptable for various 
other forms of biological data, such as biological image 
datasets. 

A major obstacle in using MDS algorithms for large 
datasets that contain hundreds of thousands, if not millions, 
of data-points is the computation complexity and memory 
requirements of these algorithms, which are typically 
𝑂(𝑁2)where N is the number of data points. This makes it 
difficult for even parallelized implementations of MDS 
algorithms to scale for large datasets. In addition, MDS 
algorithms do not have straightforward extensions or 
methods to calculate the embeddings of out-of-sample data 
points without performing the complete calculation from 
scratch. 

In this paper we propose an autoencoder-based solution 
for multidimensional scaling which would be able to address 
both the scalability and out-of-sample data point issues with 
regard to gene sequence data. While the scope of this paper 
is limited to gene sequence data, many of the concepts should 
be applicable to other areas as well. To this end, we present 
experiments and results showing the effectiveness and 
performance of the proposed autoencoder-based models 
using a large real gene sequence dataset. 

The outline of the paper is as follows. Section II provides 
a brief introduction into MDS and touches upon the current 
state-of-the-art options in MDS. In Section III we provide an 
overview of autoencoders and why they fit the problem of 
MDS so well. Section IV explains how autoencoders can be 
used for dimension reduction and the main challenges that 
need to be addressed to adapt for gene sequence data. In 



Section V we present two solutions on how gene sequence 
data can be adapted to work with autoencoders and discuss 
the merits of each approach. Finally, in Section VI we present 
experimental results to show how effective and accurate the 
proposed approaches are for dimension reduction of gene 
sequence data. 

II. MULTIDIMENSIONAL SCALING 

Multidimensional scaling [7], [8] is a term used to broadly 
classify techniques and algorithms that can represent higher 
dimensional data in lower dimensional space such as 2 or 3 
dimensions. The goal of MDS algorithms is to keep 
information loss to a minimum when projecting data into 
lower dimensions. This is done based on pairwise distance 
information of the data. In essence, MDS is a non-linear 
optimization problem which tries to optimize the mapping in 
the target dimension based on the original pairwise distance 
information. The use of pairwise distance information allows 
MDS to be used with data such as biological gene sequence 
data, which typically cannot be represented using a set of 
feature vectors but does have pairwise distances. This allows 
MDS to apply to a broader set of datasets, unlike other 
dimension reduction methods such as PCA, SOM, etc. MDS 
algorithms have a high computation complexity and memory 
requirement, which is normally 𝑂(𝑁2) where N is the number 
of data points. The memory requirement is evident by the fact 
that they take in an NxN input distance matrix. Efficient 
parallel implementations [9] and approximation-based 
implementations [10], [11] of MDS have provided the ability 
for MDS algorithms to be applied to larger datasets, yet they 
are still limited by memory availability of the cluster. For the 
purpose of this paper, we employ MPI-based DAMDS [12], 
which is a high performance implementation of the WDA-
SMACOF [6] algorithm. 

A. Input Data Preparation 

Gene sequence data in its raw form cannot be used as 
inputs to MDS. MDS algorithms take in a pairwise distance 
matrix as input, therefore the raw gene sequence data needs 
to be processed to generate the corresponding distance 
matrix. To this end, we use Smith-Waterman (SW) [13] 
algorithm to calculate pairwise distance data. It is important 
to note that the distance matrix generation step itself is quite 
compute intensive since 𝑁2distances need to be calculated. 
The Smith-Waterman algorithm itself also has a complexity 
of 𝑂(𝑀𝐿) where M and L are the lengths of the gene 
sequences being aligned. An important point regarding the 
use of pairwise distance calculated through a sequence 
alignment algorithm such as SW is that it embeds some form 
of biological similarity information directly in the distance 
values. 

B. Out-of-sample data 

Out-of-sample data refers to data points that were not 
contained in the original dataset but need to be projected into 
the same lower dimensional space. For example, these might 
be a new batch of gene sequences that were not initially added 
in the dataset but still need to be made part of the analysis. In 
such instances it is important to be able to embed the out-of-
sample data points without having to completely recalculate 
the embedding for the whole dataset. Even though there is 
typically no direct extension for MDS algorithms to support 
out-of-sample data, work has been done to provide such 
extensions in [14], [15]. However we believe the 
autoencoders-based model introduced in this paper provides  

 

Fig. 1. The structure of an autoencoder 

a much simpler and more straightforward solution for out-of-
sample data points. 

III. AUTOENCODER 

    Based on how the various layers of the network are 

designed, neural networks can be classified into various 

categories such as convolutional neural network, recurrent  

neural network, etc. Autoencoders are one such  neural 

network model. An autoencoder neural network is an 

unsupervised learning model since it does not require labeled 

data to train the network. The layers in the autoencoder are 

designed in such a way that it contains a bottleneck layer, as 

shown in Fig. 1. The input layer and the final output layer of 

an autoencoder have an equal number of units. Typically a 

network of the autoencoder is broken down into two major 

segments: the section from the input layer up to the bottleneck 

layer is known as the Encoder, and the section from the 

bottleneck layer to the output layer is known as the Decoder. 

The aim of the network is to take in the input, propagate it 

through the network, and try to reconstruct the input at the 

output layer as accurately as possible. The loss function of an 

autoencoder is typically some measurement of the difference 

between input and output vectors. Since the network has a 

bottleneck in the middle, in order to minimize the loss, the 

network needs to learn how to embed the input data using a 

lower number of units. This means that autoencoders 

essentially perform dimensional reduction to learn the most 

efficient representation in a lower dimension so it can 

reconstruct data from the reduced representation.  Fig. 1 

shows a network with a single hidden layer, but autoencoders 

can be designed with several hidden layers as needed. 

IV. MDS WITH AUTOENCODER 

 Once the basic mechanics of an autoencoder are realized, 

the way in which they are used as a mechanism to perform 

dimension reduction can be understood clearly. Looking at 

the function performed by the autoencoder in Fig. 1 from a 

multidimensional reduction point of view, the network takes 

in an input with “n” dimensions and reduces it at the hidden 

layer to a 3-dimensional data point. Once the network is 

trained, the decoder section of the network is discarded and 



the trained weights can be fixed. During the evaluation phase, 

input given into the network will output a data point with “d” 

number of dimensions, where “d” is the number of units in 

the bottleneck hidden layer (which is the output layer since 

the decoder was discarded). In [16] the authors evaluate how 

autoencoder-based dimension reduction compares to other 

forms of dimension reduction such as PCA, Isomap, etc. They 

find that the autoencoder-based approach does produce 

comparable results for both synthetic and real world data, 

however the experiments were done on rather small datasets. 

 The main challenge with adapting autoencoders to perform 

dimension reduction on gene sequence data is determining 

how the input data, which are gene sequences, can be 

modeled as inputs to the network. Autoencoders expect an 

input as a fixed length vector, however gene sequences in a 

dataset are not typically of equal length and consist of 

characters. Autoencoders expect inputs to be of numerical 

value. In Section V we present a few solutions to address this 

issue, and in Section VI we evaluate the effectiveness of the 

proposed approaches. 

V. ADAPTING GENE SEQUENCES FOR AUTOENCODERS 

 In order to use gene sequence data as input data for the 

autoencoder, the raw sequences need to be transformed into 

a format that can be consumed by the autoencoder. To this 

end, the gene sequence, which consists of a sequence of 

characters, must be converted into a representative numerical 

vector.  

A. Encoding gene sequences 

  Choosing the correct encoding to convert the gene sequence 

into a fixed-size vector is important since some encoding may 

provide false signals to the network, resulting in poor 

performing networks. The two most common methods used 

to encode sequence data into numeric vectors are “one hot 

encoding” and “ordinal encoding.”  

 

1) One Hot Encoding 

In One Hot Encoding (OHE), each character in the 

sequence is replaced by a vector. The length of the vector is 

equal to the number of unique characters in the sequence, 

which is 4 in RNA sequences, and the values in the vector 

other than the location that corresponds to the current 

character would be zero. All these vectors are then 

concatenated to create a single vector that represents the 

whole sequence. For example, an RNA sequence ATGC 

would have the encoding shown below. Since gene sequences 

in the same dataset may have different lengths, to keep the 

size of the input vectors equal, vectors need to be padded with 

“0” when needed. 

Ex: ATGC - [0,0,0,1], [0,0,1,0], [0,1,0,0], [1,0,0,0] 

 

2) Ordinal Encoding 

In ordinal encoding, instead of a vector, each character is 

given a numeric value. The sequence encoding replaces each 

character with the corresponding numeric value. As with 

OHE, to make vector lengths equal, “0”  must be added as 

padding values when needed. Taking RNA sequences as an 

example, characters “A,T,G,C” can be assigned values  “0.25, 

0.5, 0.75, 1.0” respectively. This would mean the encoded 

result of the sequence “GGTAC” would be as follows. 

Ex: GGTAC - [0.75, 0.75, 0.5, 0.25, 1.0] 

 
Fig. 2. Evaluated dimension reduction approaches. (a) DAMDS. (b) 

Autoencoder with OHE, “H” is the length of the vector once it is encoded 

with OHE, (c) Autoencoder with reference sequences, “K” is the number of 

reference sequences 

     One hot encoding has a drawback in that for sequence data 

with a large alphabet, it would create very large encoding 

since the length of the vector is the size of the alphabet for 

each character in the sequence. While ordinal encoding does 

not have this problem, it has a much more acute issue when 

applied for neural networks. Since different numeric values 

are given to different characters of the alphabet, the network 

tends to give more weight to higher numeric values, which 

would result in the trained network favouring certain 

characters of the alphabet rather than others. In the context of 

gene sequences, OHE seems to be the most suitable and 

popular encoding method. Since the alphabet of the gene 

sequence is limited (4 letters in RNA and 25 if converted to 

amino acids), OHE does not have a large impact when 

encoding gene sequence data. The argument to use OHE to 

convert gene sequences to vectors is further validated by its 

use in the research literature, as shown in [17], [18]. Fig. 2  

(b) illustrates how OHE is used to generate input vectors for 

one of the three dimension reduction approaches evaluated in 

Section VI. 

B. Pairwise Distance 

As mentioned in Section II, pairwise distances calculated 

through gene sequence alignment algorithms have the added 

advantage of incorporating biological similarity information 

in the distance calculation. The main drawback of using OHE 

to encode input data is that it does not embed any biological 

distance data in the generated embedding vector, which is 

used as the input to the neural network. However, directly 

using the distance matrix as with MDS is not practical since 

the distance matrix generated is an NxN matrix, and thus the 

input vector for each input data will be of length N where N 

is the number of data points in the dataset. This would mean 

that the input layer of the autoencoder would consist of N 

units and would have to change with the size of the dataset.  

As a solution to this, we propose a sampling-based solution 

which allows biological distance information to be embedded 

in the input while keeping the length of the input length fixed. 

For a given dataset with N sequences, K random sequences 

are selected as reference sequences. Next the pairwise 

distances between each sequence and the K reference 

sequences are calculated, which produces a vector to length 

K to be used as the input for the autoencoder. Choosing a 



representative K depends on the dataset, but it needs to be 

sufficiently large to make sure the loss of information is 

minimal. For example, if the goal is to identify clusters within 

the dataset, a logical estimate of K would have to be “10xC” 

or “20xC,” where “C” is a rough estimate of the number of 

clusters in the dataset. Keeping K as large as possible based 

on memory and computation capacity restriction would make 

sure the information loss is minimal, but it would also 

increase the size of the autoencoder network. Results 

discussed in Section VI show that even small K produces 

good results. Section VI presents the results obtained with a 

real world dataset to prove the effectiveness of this approach. 

Fig. 2 (c) shows how the K reference-based approach is used 

to generate the input vectors for the autoencoder. 

VI. EXPERIMENTS & DISCUSSION 

 In order to evaluate the proposed autoencoder-based 

approach for dimension reduction, we ran several tests on a 

real world gene sequence dataset. The aim of the first set of 

experiments was to evaluate the proposed approach against a 

state-of-the-art MDS implementation, and the second set of 

experiments focused on evaluating the out-of-sample data 

point performance.  

A. Evaluation Environment 

Data visualization is done using WebPlotViz [19],[20], 

which provides an interactive data visualizer that can plot 

large 2- and 3-dimensional datasets trivially. DAMDS tests 

were performed on a cluster which had 16 nodes of Intel 

Platinum processors with 48 cores in each node, 56Gbps 

InfiniBand and 10Gbps network connections. Autoencoder-

based models were implemented using the distributed data 

parallel mode of PyTorch [21] and executed on 8 Tesla K80 

GPUs. 

B. Data 

The dataset used for evaluation is a fungal gene sequence 

dataset which contains 7 million gene sequences, of which 

578K are unique and contain 170K unique sequences that 

occur more than once within the dataset. The goal of 

analysing the data is to identify clusters (fungi classes) within 

the dataset through dimension reduction and visualization. 

Therefore this dataset is well-suited to evaluate the proposed 

autoencoder-based dimension reduction approach introduced 

in this paper. The sequences are RNA sequences made up of 

“A,T,G,C” characters. 

The clusters used during the analysis for the dataset were 

identified through several iterations of pairwise clustering 

algorithm DAPWC [22], [23], [24] with human input 

between each iteration. The detailed mechanism used to 

identify the clusters is beyond the scope of this paper and 

therefore is not explained in detail. The processes yielded 211 

clusters for the 170K unique gene sequences that occur more 

than once in the gene dataset.  

C. Dimensionality Reduction 

In order to compare the dimension reduction capability, 

we perform dimension reduction of 170K gene sequences to 

project them in 3-dimensional space. This is done in three 

approaches which are illustrated in Fig. 2.  

● (a) DAMDS will be used as the base to compare 

against. Input pairwise distance matrix is calculated 

using a data parallel implementation of Smith-

Waterman algorithm. DAMDS implementation is 

also an MPI-based parallel implementation 

● (b) Gene sequences are encoded using OHE to 

generate the input vectors for the autoencoder. H 

would correspond to L*C where L is the longest 

gene sequence in the dataset and C is the number of 

characters in the RNA alphabet. All shorter 

sequences are padded with zeros to match the 

length. 

● (c) Input vectors for the autoencoder are calculated 

based on the K randomly sampled reference 

sequences and their similarity based on the Smith-

Waterman algorithm. 

 

The first set of experiments were executed on the 170K 

unique gene sequence dataset. For the autoencoders used for 

(b) and (c), the autoencoder was structured as 

“Inputx128x3x128xOutput.” The activation function used 

was Relu for all layers other than the bottleneck layer, where 

LeakyRelu was employed. For (b) the input layer contained 

1100 units, which is the H value in Fig. 2 (b). For ©, the 

number of reference sequences K was selected as 1500, 

resulting in an input layer of 1500 units for the autoencoder. 

Each autoencoder was trained for 100 epochs. The results of 

the three approaches a, b, c are shown in Fig. 3, Fig. 4 and 

Fig. 5 in order. The visualizations are done in 3-dimensional 

space, therefore placement of clusters is not completely clear 

in the figures. Through visual inspection of the 3-dimensional 

plots it is clear that each method generated an acceptable 

projection of the data points into 3-dimensional space. 

However, when compared to DAMDS results, the results of 

approach (c), which uses reference sequences and Smith-

Waterman algorithm, produces better results. Fig. 6 shows 

distance heat-maps for different runs. They display the 

correlation between Smith-Waterman distance and the 

Euclidean distance in the projected 3-dimensional space. The 

distances are normalized between 0 and 1. The heatmap 

results show that the approach (c) using reference sequences 

provides a better mapping than OHE. Also, using 1K 

references provides a marginally better heatmap than 100 

references. 

 
Fig. 3. DAMDS 170K points projected to 3D (a) 



 
Fig. 4. OHE, 170K points projected to 3D (b) 

      In order to further evaluate the quality of the dimension 

reduction achieved through the presented approaches, we 

used the Silhouette Coefficient (SC) [25] to calculate the 

quality of the results. SC takes into account both the closeness 

of points within clusters and the distance between clusters. 

However, the complex nature of the clusters in the dataset 

that is projected in 3-dimensional space means SC is not able 

to capture all the nuances of the clusters. That being said, it 

still would give some indication on the quality of the results. 

In order to further analyse approach (c), dimension reduction 

was performed with varying K to observe the effect of K on 

the results generated. Table I lists the SC values for each run. 

Five random reference sequence samples were taken for each 

K value, and the maximum SC value of the 5 runs are taken. 

The negative results can be attributed to the complex nature 

of the clusters in the dataset. The slightly lower SC values for 

larger K (>=2000) can be attributed to the increased network 

size of the autoencoder to some extent, this effect can be 

mitigated by increasing the number of layers in the network 

for larger K as shown in Table III, the results in Table III also 

suggest that after a certain number of layers the result may go 

back down. However it is important to note that while SC  

 
Fig. 5. 1.5K reference sequences, 170K points projected to 3D (c) 

 
Fig. 6. Heatmaps of Smith-Waterman distance vs projected distance in 3D 

values show a decline, the visual clusters do not show 

noticeable degradation. The SC value for DAMDS is 

comparable to SC values of the reference sequences method 

when K is sufficiently large. OHE shows lower SC value, 

which affirms the visual and heatmap results obtained for 

approach (b).  

D. Out-of-Sample Data 

Evaluating the effectiveness of the autoencoder-based 

dimension reduction approach for out-of-sample data was 

performed using a subset of the full 170K data points, which 

contained 29953 gene sequences with 22 clusters. This was 

only done for the reference sequence-based method since it 

showed superior results when compared to the OHE-based 

method. As the baseline, dimension reduction was performed 

using K=400 with all data points included in the training 

phase. KMeans algorithm was used to identify the 22 clusters. 

Afterwards a set of gene sequences were left out for the 

training phase of the autoencoder but included for the 

evaluation phase. The resulting 3-dimensional results would 

again be clustered using KMeans (using the same cluster 

centers from the baseline results as initialization points). The 

accuracy for the out-of-sample data points is calculated by 

counting the number of points which were classified into the 

same clusters as in the baseline results. For example, if 100 

data points were left out during training and 5 of those were 

classified into a different cluster, then it was classified in the 

baseline results, which would mean 95% accuracy rate for 

out-of-sample data. Results listed in Table II show that the 

trained autoencoder has a very high accuracy for out-of-

sample data, more than 99.5%. It is important to note that 

these accuracy numbers might vary depending on the dataset. 

E. Runtime 

Another important aspect that needs to be kept in mind, 

especially when dealing with large datasets, is the 

computational complexity and memory requirements of the 

program in question. Even though availability of resources 

has grown rapidly over the years, access to large computing  



TABLE I.  SILHOUETTE COEFFICIENT FOR DIFFERENT METHODS 

Method 
Silhouette Coefficient 

Max Min Average 

DAMDS N/A N/A -0.219 

One Hot Encoding N/A N/A -0.502 

References (K = 25) -0.233 -0.388 -0.309 

References (K = 50) -0.229 -0.397 -0.289 

References (K = 100) -0.238 -0.371 -0.278 

References (K = 200) -0.236 -0.331 -0.268 

References (K = 400) -0.231 -0.306 -0.262 

References (K = 800) -0.219 -0.300 -0.256 

References (K = 1000) -0.209 -0.308 -0.257 

References (K = 1500) -0.193 -0.311 -0.248 

References (K = 2000) -0.207 -0.297 -0.264 

References (K = 4000) -0.294 -0.357 -0.322 

 

clusters to run applications may be hard to come by. One of 

the main drawbacks of DAMDS is its memory requirement, 

which is 𝑂(𝑁2). Therefore running large datasets requires a 

cluster of machines. For example, just to save the distance 

data matrix for the 170K dataset, roughly 55GB of memory 

is needed, and the creation of that distance matrix requires 

roughly 14.5 billion Smith-Waterman calculations as listed in 

Table IV. If the number of gene sequences in the dataset were 

to be 1 million, the memory requirement just to load the input 

dataset would be close to 2TB, and the number of Smith-

Waterman calculations would be around 500 billion, which 

makes it infeasible to run DAMDS on such large datasets. 

The autoencoder-based solution for dimension reduction is 

far less demanding on resources. As listed in Table IV, OHE 

does not have any significant pre-processing requirements, 

and when using reference sequences, the number of Smith-

Waterman distances that need to be calculated are reduced 

from 14.5 billion to 170 million (for K=1000). Similarly the 

autoencoder-based method has drastically reduced the 

memory requirements. In the training and evaluation stage, 

the memory requirement is mainly dependent on the network 

size, which in the experiments performed in Section VI-C 

were only a couple hundred MBs. As the results obtained 

through the experiments have shown, even a small 

autoencoder is able to produce accurate outputs. This 

reduction, especially in memory requirements, allows 

autoencoder-based dimension reduction scalable to datasets  

with millions of data points, making dimension reduction on 

large datasets achievable even with limited resources. While 

the autoencoder experiments were executed on 8 Tesla K80 

TABLE II.  OUT OF SAMPLE DATA CLASSIFICATION ACCURACY, 
400 REFERENCES(K) 

Out-of-Sample Data Points Incorrect Classification Accuracy 

2000 4/1000 99.8% 

4000 17/4000 99.57% 

8000 17/8000 99.78% 

nodes, the same network can be trained on a single machine 

with sufficient memory or a single GPU. We were able to run 

the same model with 1 Tesla K80 node with ease. While the 

reduction of computations done during pre-processing is 

quite clear (14.5 billion to 170 million for 170K sequences), 

comparing the computation requirements between DAMDS 

algorithm and the autoencoder-based solution is not 

straightforward since the two are completely different 

approaches. However, looking at runtimes for each will 

provide a sense of the resource requirement differences. It 

took DAMDS roughly 80 minutes to complete, with a 

parallelism of 288 on 12 (48 core) compute nodes, while the 

autoencoder-based solution (K=1000, in Table I) was able to 

complete within 11 minutes on 8 Tesla K80 GPUs. Even on 

a single K80 GPU, it was able to complete within 37 minutes, 

which shows that the autoencoder-based solution was 

considerably quicker than DAMDS with far less resources.   

VII. RELATED WORK 

 MDS is a well-researched area and has seen many 

advances over the years. In [4] the authors use the t-SNE, a 

variation of Stochastic Neighbor Embedding [26], to 

visualize high dimensional data in 2- or 3-dimensional space. 

In [5] the authors present a manifold learning technique 

named UMAP for dimension reduction that provides better 

runtime performance than t-SNE. Furthermore, there have 

been many advances in MDS over the years. [27] provides a 

survey of many such popular MDS approaches and the real 

world user cases of each approach. 

 The use of autoencoders for MDS has also been studied in 

a limited capacity in the research literature. We believe that 

this is a promising area which demands further exploration to 

uncover its full potential. In [16] the authors evaluate the 

effectiveness of autoencoder-based dimension reduction 

against other techniques such as PCA and Isomap using both 

synthetic and real world data. They conclude that in addition 

to reducing the dimensions, autoencoders can also learn 

further repetitive patterns in the data which other techniques 

may not identify. In [28] the authors use deep variational 

autoencoders for dimension reduction of single cell RNA 

sequences. 

 Supporting out-of-sample data for dimension reduction 

algorithms is an important aspect. While most dimension 

reduction solutions do not have a direct method to support 

out-of-sample data, work has been done in this area to 

provide such capabilities. In [29] the authors introduce a 

TABLE III.  SILHOUETTE COEFFICIENT FOR DIFFERENT NETWORK 

STRUCTURES 

References (K) 
Network (Encoder Hidden Layers) 

128x3 256x32x3 
512x128x

32x3 

1024x256x

64x16x3 

4000 

Avg -0.321 -0.226 -0.273 -0.246 

Max -0.298 -0.180 -0.210 -0.202 

Min -0.349 -0.260 -0.331 -0.288 

6000 

Avg -0.356 -0.205 -0.239 -0.233 

Max -0.258 -0.188 -0.174 -0.200 

Min -0.482 -0.218 -0.307 -0.261 

 



TABLE IV.  COMPUTATIONS INVOLVED IN EACH APPROACH, FOR 

170K FUNGI GENE DATASET 

Method Pre-Processing Stage 
Dimension Reduction 

Stage 

DAMDS 

SW Distance Calculations 

to generate input distance 

matrix (~14.5 billion 
calculations). SW 

algorithm is𝑂(𝑀𝐿) where 

M and L are lengths of 

each gene sequence & 
DAMDS algorithm - 

𝑂(𝑁2) 
 

DAMDS algorithm -

𝑂(𝑁2) 
Runtime with 288 way 

parallelism on 12 (48 

core) nodes ~80 minutes 
 

OHE 

N (170K) one hot encoding 

calculations to generate 

input vectors. OHE has a 

complexity of 𝑂(𝑁) 

Autoencoder training 

phase, the runtime 
calculations depend on 

the number of epochs and 

network complexity. Add 
evaluation phase to 

generate the dimension-

reduced results. 
Runtime on 1 Tesla K80 

GPU ~37 minutes. 

Runtime with 8 way 
parallelism on 8 Tesla 

K80 GPUs ~11 minutes. 

Reference 

Sequences 

Smith-Waterman Distance 
Calculations to generate 

input distance matrix 

(~170 million calculations 
for K=1000). 

SW algorithm is 𝑂(𝑀𝐿) 
where M and L are lengths 

of each gene sequence. 

Autoencoder training 
phase; the runtime 

calculations depend on 

the number of epochs and 
network complexity. Add 

the Evaluation phase to 

generate the dimension-
reduced results. 

Runtime on 1 Tesla K80 

GPU ~37 minutes. 
Runtime with 8 way 

parallelism on 8 Tesla 

K80 GPUs ~11 minutes. 

 

unified framework which offers an extension to support out-

of-sample data for several dimension reduction techniques 

such as Isomap, Local Linear Embedding (LLE), MDS, etc. 

In [30] the authors present an out-of-sample extension for 

classical MDS. In [10] the authors discuss an adaptive 

interpolation method for out-of-sample data points for  

multidimensional scaling. 

VIII. CONCLUSIONS 

This paper presented and evaluated an autoencoder-based 
dimension reduction approach for large gene sequence 
datasets. From the results that we obtained from several 
experiments on real gene sequence data, and comparing them 
with results obtained from DAMDS, it is clear that the 
autoencoder-based solution which uses a set of reference 
sequences is capable of producing comparable (or better) 
results to DAMDS while drastically reducing resource and 
computation requirements. The results also showcase how 
accurate the model is for out-of-sample data points, which is 
directly supported without any additional work needed in the 
presented model. Therefore we can conclude that the 
autoencoder-based dimension reduction approach coupled 
with reference sequence method for input encoding is a viable 
and promising approach to analyse large gene sequence 
datasets, with high accuracy and minimal compute resource 
requirements, making such data analysis tasks easily 
accessible to a broader audience.  

 While this paper focused on the evaluation of the model 
around gene sequence data, it is plausible that this model can 
be applied to many other forms of data. However this would 
require further research and experiments to verify the model 
accuracy and validity. A strong argument in favour of the 
applicability onto a broader range of datasets would be the 
well-known versatility of neural networks that has been 
observed throughout the past several years in the research 
literature. One direct extension would be to apply such a 
model for large biological image datasets by adding 
convolution layers to the network. This is left as future work 
alongside the evaluation of the autoencoder-based models for 
various types of datasets in pursuit of dimension reduction. 
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